QUESTION 1.

7

1V
A system is monitored using sensors. The sensors output binary values correspo. ' ‘
conditions, as shown in the table:
Description of Binary I -
Parameter parameter value Description of condition
1 pressure >= 3 bar
P oil pressure
0 pressure < 3 bar
1 temperature >= 200°C
T temperature
0 temperature < 200°C
1 rotation <= 1000 revs per minute (rpm)
R rotation
0 rotation > 1000 revs per minute (rpm)

The outputs of the sensors form the inputs to a logic circuit. The output from the circuit, X, is 1 if
any of the following three conditions occur:

either

or

or

oil pressure >= 3 bar and temperature >= 200°C
oil pressure < 3 bar and rotation > 1000 rpm

temperature >= 200°C and rotation > 1000 rpm

(a) Draw a logic circuit to represent the above system.

[R1

11

(b) Complete the truth table for this system.

Workspace

P T R
0 0

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

[4]

QUESTION 2. .

2

Assemblers translate from assembly language to machine code. Some asse:
assembly language program twice; these are referred to as two-pass assemblers.

The following table shows five activities performed by two-pass assemblers.

Write 1 or 2 to indicate whether the activity is carried out during the first pass or during the secc

pass.

Activity

First pass or
second pass

any symbolic address is replaced by an absolute address

any directives are acted upon

any symbolic address is added to the symbolic address table

data items are converted into their binary equivalent

forward references are resolved

(3]

QUESTION 1. w

4 Abinary tree Abstract Data Type (ADT) has these associated operations:

e create the tree (CreateTree)
* add an item to tree (Add)
e output items in ascending order (TraverseTree)

(a) Show the final state of the binary tree after the following operations are carried out.

CreateTree
Add ("Dodi")
Add ("Farai")
Add("E11li™)
Add("George")
Add ("Ben")
Add ("Celine")
Add ("AIli")

[4]

11

(b) The binary tree ADT is to be implemented as an array of nodes. Each node ' "
and two pointers.

Using pseudocode, a record type, Node, is declared as follows:
TYPE Node
DECLARE Name : STRING
DECLARE LeftPointer : INTEGER
DECLARE RightPointer : INTEGER
ENDTYPE
The statement
DECLARE Tree : ARRAY[1:10] OF Node

reserves space for 10 nodes in array Tree.

The CreateTree operation links all nodes into a linked list of free nodes. It also initialises the
RootPointer and FreePointer.

Show the contents of the Tree array and the values of the two pointers, RootPointer and

FreePointer, after the operations given in part (a) have been carried out.

Tree

RootPointer Name LeftPointer RightPointer

FreePointer [3]

[7]

12

(c) A programmer needs an algorithm for outputting items in ascending order. 1c
programmer writes a recursive procedure in pseudocode.

(i) Complete the pseudocode:

01 PROCEDURE TraverseTree (BYVALUE Root: INTEGER)

02 IF Tree[ROOL] . LeftPOINt el e
03 THEN

04 R e RSN Al TN N o <Y (P,)
05 ENDIF

06 @108 = PP .Name
07 PP <> 0
08 THEN

09 B oY =% ¥ < Yl st =Y < N (S)
10 ENDIF

11 ENDPROCEDURE

[3]

(ii) Explain what is meant by a recursive procedure. Give a line number from the code above
that shows procedure TraverseTree is recursive.

LiNE NUMDET [2]

(iii) Write the pseudocode call required to output all names stored in Tree.

13

Question 5 begins on page 14.

QUESTION 2. -

3 Thefollowing table shows part of the instruction set for a processor which has one_ m
register, the Accumulator (ACC), and an index register (I1X). /

Instruction
Explanation

Op Operand

code

LDM | #n Immediate addressing. Load the number n to ACC.

LDD | <address> Direct addressing. Load the contents of the given address to ACC.
Indexed addressing. Form the address from <address> + the contents

LDX | <address> of the index register. Copy the contents of this calculated address to
ACC.

LDR | #n Immediate addressing. Load the number n into IX.

STO | <address> Store the contents of ACC at the given address.

INC | <register> Add 1 to the contents of the register (ACC or IX).

DEC | <register> Subtract 1 from the contents of the register (ACC or 1X).

CMP | <address> Compare the contents of ACC with the contents of <address>.

CMP | #n Compare the contents of ACC with number n.

IPE caddresss Following a compare instruction, jump to <address> if the compare
was True.

JPN | <address> Following a compare instruction, jump to <address> if the compare
was False.
Output to the screen the character whose ASCII value is stored in

ouUT
ACC.

END Return control to the operating system.

A programmer is writing a program that outputs a string, first in its original order and then in
reverse order.

The program will use locations starting at address NAME to store the characters in the string. The
location with address MAX stores the number of characters that make up the string.

The programmer has started to write the program in the table opposite. The Comment column
contains descriptions for the missing program instructions.

Complete the program using op codes from the given instruction set.

15

Label

code Operand

Comment

START:

//

initialise index register to zero

//

initialise COUNT to zero

LOOP1:

//

load character from indexed address NAME

//

output character to screen

//

increment index register

//

increment COUNT starts here

//

is COUNT = MAX °?

//

if FALSE, Jjump to LOOP1

REVERSE:

//

decrement index register

//

set ACC to zero

//

store in COUNT

LOOP2:

//

load character from indexed address NAME

//

output character to screen

//

decrement index register

//

increment COUNT starts here

//

is COUNT = MAX ?

//

if FALSE, Jjump to LOOP2

//

end of program

COUNT:

4

NAME :

B0O1000110

//

ASCII code in binary for 'F'

B01010010

//

ASCII code in binary for 'R’

B01000101

//

ASCII code in binary for 'E'

B01000100

//

ASCII code in binary for 'D'

[15]

QUESTION 3.

3 (a) The numerical difference between the ASCII code of an upper case letter and the ASCII code
of its lower case equivalent is 32 denary (32,,).

For example, 'F' has ASCII code 70 and ' £' has ASCII code 102.

Bit number
7/6,54|3|2]1,0
ASCII code ASCII code in binary
70 0 1101070 11110
102 0 1 1 0 0 1 1 0

The bit patterns differ only at bit number 5. This bit is 1 if the letter is lower case and 0 if the
letter is upper case.

11

(i) A program needs a mask to ensure that a letter is in upper case.

Write the binary pattern of the mask in the space provided in the table below.

Bit number
7/6|5]4[3]2|1]0
ASCII code ASCII code in binary
70 0|1 010 0|1 110
102 0|1 110 0|1 110
Mask

Give the bit-wise operation that needs to be performed using the mask and the
ASCII code.

(ii) A program needs a mask to ensure that a letter is in lower case.

Write the binary pattern of the mask in the space provided in the table below.

Bit number
7/ 6,543,210
ASCII code ASCII code in binary
70 0|1 010 0|1 110
102 o/ 1]1|0|0]1]1]0O
Mask

Give the bit-wise operation that needs to be performed using the mask and the
ASCII code.

12

The following table shows part of the instruction set for a processor which.
purpose register, the Accumulator (ACC), and an index register (1X).

Instruction
Op Operand Explanation
code
LDM | #n Immediate addressing. Load the number n to ACC.
10D | <address> Direct addressing. Load the contents of the given address to
ACC.
Indexed addressing. Form the address from <address> +
LDX | <address> the contents of the index register. Copy the contents of this
calculated address to ACC.
LDR | #n Immediate addressing. Load the number n into IX.
STO | <address> Store the contents of ACC at the given address.
INC | <register> Add 1 to the contents of the register (ACC or IX).
CMP | <address> Compare the contents of ACC with the contents of <address>.
CMP | #n Compare the contents of ACC with number n.
IPE | <address> Following a compare instruction, jump to <address> if the
compare was True.
IPN | <addresss Following a compare instruction, jump to <address> if the
compare was False.
Bitwise AND operation of the contents of ACC with the
AND | #n
operand.
AND | <addresss Bitwise AND operation of the contents of ACC with the
contents of <address>.
Bitwise XOR operation of the contents of ACC with the
XOR | #n
operand.
YOR | <address> Bitwise XOR operation of the contents of ACC with the
contents of <address>.
OR | #n Bitwise OR operation of the contents of ACC with the operand.
OR | <addresss> Bitwise OR operation of the contents of ACC with the contents
of <address>.
Output to the screen the character whose ASCII value is
ouT :
stored in ACC.
END Return control to the operating system.

A programmer is writing a program that will output the first character of a string in upper case and
the remaining characters of the string in lower case.

The program will use locations from address WORD onwards to store the characters in the string.
The location with address LENGTH stores the number of characters that make up the string.

13

The programmer has started to write the program in the following table. The ¢
contains descriptions for the missing program instructions.

(b) Complete the program using op codes from the given instruction set.

Op

Label code

Operand Comment

START: // initialise index register to zero

// get first character of WORD

// ensure it is in upper case using MASK1

// output character to screen

// increment index register

// load 1 into ACC

// store in COUNT

LOOP: // load next character from indexed address WORD

// make lower case using MASK?2

// output character to screen

// increment COUNT starts here

// is COUNT = LENGTH ?

// if FALSE, Jjump to LOOP

// end of program

COUNT:

MASK1: // bit pattern for upper case

MASK2 : // bit pattern for lower case

LENGTH: 4

WORD: B01100110 | // ASCII code in binary for 'f'

B01110010 | // ASCII code in binary for 'r'

B01000101 | // ASCII code in binary for 'E'

B01000100 | // ASCII code in binary for 'D'

[12]

14

Question 4 begins on page 15.

QUESTION 4. .

3 Namelist is a 1D array that stores a sorted list of names. A programmer decic
pseudocode as follows:

NameList : Array[0 : 100] OF STRING
The programmer wants to search the list using a binary search algorithm.

The programmer decides to write the search algorithm as a recursive function. The function, Find,
takes three parameters:

* Name, the string to be searched for

. Start, the index of the first item in the list to be searched

* Finish, the index of the last item in the list to be searched

The function will return the position of the name in the list, or -1 if the name is not found.

Complete the pseudocode for the recursive function.

FUNCTION Find(BYVALUE Name : STRING, BYVALUE Start : INTEGER,
BYVALUE Finish : INTEGER) RETURNS INTEGER

// base case

THEN
RETURN -1

ELSE

L PP
ELSE // general case
S Y ST B at e o ot =Y ¢ PP

THEN

ENDIF
ENDIF
ENDIF

ENDFUNCTION [71

QUESTION 5.

2

-

An ordered binary tree Abstract Data Type (ADT) has these associated operatiori.

° create tree

. add new item to tree

° traverse tree

The binary tree ADT is to be implemented as a linked list of nodes.

Each node consists of data, a left pointer and a right pointer.

(@) A null pointer is shown as @.

Explain the meaning of the term null pointer.

(b) The following diagram shows an ordered binary tree after the following data have been

added:

Dublin, London, Berlin, Paris, Madrid, Copenhagen

RootPointer

N
| | Dublin
@ | Berlin \\
@ |Copenhagen| @

Another data item to be added is Athens.

Make the required changes to the diagram when this data item is added.

London

AN

Paris

/

Madrid

5

(c) Atree without any nodes Unused nodes are linked together.
is represented as: as shown:
RootPointer FreePointer
1) \\
%
%
Q
N
N
] Q@

The following diagram shows an array of records that stores the tree shown in part (b).

(i) Add the relevant pointer values to complete the diagram.

RootPointer LeftPointer Tree data RightPointer
0 [0] Dublin
[1] London
[2] Berlin
[3] Paris
[4] Madrid
FreePointer [5] Copenhagen
[6] Athens
[7]
[8]
[9]

(3]

(ii) Give an appropriate numerical value to represent the null pointer for th:

your answer.

6

(d) A program is to be written to implement the tree ADT. The variables and procedures to be

used are listed below:

Identifier Data type Description

Node RECORD ‘[));trie?;r-ucture to store node data and associated
LeftPointer INTEGER Stores index of start of left subtree.

RightPointer INTEGER Stores index of start of right subtree.

Data STRING Data item stored in node.

Tree ARRAY Array to store nodes.

NewDataItem STRING Stores data to be added.

FreePointer INTEGER Stores index of start of free list.

RootPointer INTEGER Stores index of root node.

NewNodePointer INTEGER Stores index of node to be added.

CreateTree ()

Procedure initialises the root pointer and free pointer
and links all nodes together into the free list.

AddToTree ()

Procedure to add a new data item in the correct
position in the binary tree.

FindInsertionPoint ()

Procedure that finds the node where a new node is

to be added.

Procedure takes the parameter NewDataItem and

returns two parameters:

. Index, whose value is the index of the node
where the new node is to be added

. Direction, whose value is the direction of the
pointer (“Left” or “Right”).

7
(i) Complete the pseudocode to create an empty tree.

TYPE Node

ENDTYPE
DECLARE Tree : ARRAY [0 1 O iiiiiiiiiiiiiiiiiiiie e etea s eeassasasasasessaensesansneneasrasnens
DECLARE FreePointer : INTEGER

DECLARE RootPointer : INTEGER

PROCEDURE CreateTree ()

DECLARE Index : INTEGER

FOR Index < 0 TO 9 // link nodes

ENDPROCEDURE [7]

8

(ii) Complete the pseudocode to add a data item to the tree.

PROCEDURE AddToTree (BYVALUE NewDataltem : STRING)
// 1if no free node report an error
I T o Y O = i o o = PP
THEN
OUTPUT ("No free space left")
ELSE // add new data item to first node in the free list
NewNodePointer < FreePointer
// adjust free pointer
YN =R I o ul N PP
// clear left pointer
Tree [NewNodePointer] .LeftPointer < e

// 1s tree currently empty ?

ELSE // find position where new node is to be added
Index < RootPointer
CALL FindInsertionPoint (NewDataltem, Index, Direction)
IF Direction = "Left"

THEN // add new node on left

ENDIF
ENDIF
ENDIF

ENDPROCEDURE [8]

(e) The traverse tree operation outputs the data items in alphabetical order. T
as a recursive solution.

Complete the pseudocode for the recursive procedure TraverseTree.

PROCEDURE TraverseTree (BYVALUE Pointer : INTEGER)

ENDPROCEDURE [5]

QUESTION 6. .

2 A computer games club wants to run a competition. The club needs a system t
achieved in the competition.

A selection of score data is as follows:
99, 125, 121, 97, 109, 95, 135, 149

(@) A linked list of nodes will be used to store the data. Each node consists of the data, a left
pointer and a right pointer. The linked list will be organised as a binary tree.

(i) Complete the binary tree to show how the score data above will be organised.

RootPointer

N

The symbol & represents a null pointer.

LeftPointer RightPointer

121

(3]

(ii) The following diagram shows a 2D array that stores the nodes of the b

list.

Add the correct pointer values to complete the diagram, using your ans

part (a)(i).

RootPointer Index

FreePointer

LeftPointer

Data

RightPointer

99

125

121

97

109

95

135

149

(6]

(b) The club also considers storing the data in the order in which it receives
linked list in a 1D array of records.

The following pseudocode algorithm searches for an element in the linked list.
Complete the six missing sections in the algorithm.
FUNCTION FindElement (Item : INTEGER) RETURNS .
... < RootPointer
WHILE CurrentPOINTET . NullPointer
IF List[CurrentPointer] .Data <> .
THEN
CurrentPointer ¢ LiSt [,] .Pointer
ELSE
RETURN CurrentPointer
ENDIF
ENDWHILE
CurrentPointer ¢« NullPointer

.. CurrentPointer

ENDFUNCTION

(6]

(c) The games club is looking at two programming paradigms: imperative an
programming paradigms.

Describe what is meant by the imperative programming paradigm and the object-
programming paradigm.

(i) Imperative

8

(d) Players complete one game to place them into a category for the competition.
wants to implement a program to place players into the correct category. The \
has decided to use object-oriented programming (OOP).

The highest score that can be achieved in the game is 150. Any score less than 50 w
qualify for the competition. Players will be placed in a category based on their score.

The following diagram shows the design for the class Player. This includes the properties
and methods.

Player

Score : INTEGER // initialised to 0

Category : STRING // "Beginner", "Intermediate",
// "Advanced" or "Not Qualified", initialised
// to "Not Qualified"

PlayerID : STRING // initialised with the parameter InputPlayerID

Create() // method to create and initialise an object using
// language-appropriate constructor

SetScore () // checks that the Score parameter has a valid value
// if so, assigns it to Score

SetCategory () // sets Category based on player’s Score

SetPlayerID() // allows a player to change their PlayerID
// validates the new PlayerID

GetScore () // returns Score

GetCategory () // returns Category

GetPlayerID() // returns PlayerID

(i) The constructor receives the parameter InputPlayerID to create
Other properties are initialised as instructed in the class diagram.

Write program code for the Create () constructor method.

Programming language

Program code

10

(ii) Write program code for the following three get methods.
Programming language

GetScore ()

Program code

GetCategory ()

Program code

GetPlayerID()

Program code

11

(iii) The method setPlayerID ()asks the user to input the new player ID
value.

It checks that the length of the PlayerID is less than or equal to 15 chara
greater than or equal to 4 characters. If the input is valid, it sets this as the pP1a
otherwise it loops until the player inputs a valid PlayerID.

Use suitable input and output messages.

Write program code for SetPlayerID().

Programming JaNQUAGEcuiiiiiiiiei e

Program code

12

(iv) The method setscore () checks that its INTEGER parameter Score
it is valid, it is then set as Score. Avalid ScoreInput is greater than or
less than or equal to 150.
If the ScoreInput is valid, the method sets Score and returns TRUE.

If the ScoreInput is not valid, the method does not set Score, displays an err
message, and it returns FALSE.

Write program code for SetScore (ScoreInput : INTEGER).

Programming language

Program code

13

(v) Write program code for the method setCategory (). Use the properu
in the original class definition.

Players will be placed in one of the following categories.

Category Criteria

Advanced Score is greater than 120

Intermediate | Score is greater than 80 and less than or equal to 120

Beginner Score is greater than or equal to 50 and less than or equal to 80

Not Qualified | Score is less than 50

Programming language

Program code

(vi)

14
Joanne has played the first game to place her in a category for the co
The procedure CreatePlayer () performs the following tasks.

* allows the player ID and score to be input with suitable prompts

* creates an instance of P1ayer with the identifier JoannePlayer
* sets the score for the object

* sets the category for the object

* outputs the category for the object

Write program code for the CreatePlayer () procedure.

Programming laNQUAGEooouiiiiiiiiiee e

Program code

15

(e) The programmer wants to test that the correct category is set for a player’s &

As stated in part (d)(v), players will be placed in one of the following categories. \

Category

Criteria

Advanced

Score is greater than 120

Intermediate

Score is greater than 80 and less than or equal to 120

Beginner

Score is greater than or equal to 50 and less than or equal to 80

Not Qualified

Score is less than 50

Complete the table to provide test data for each category.

Category

Type of test data Example test data

Beginner

Normal

Abnormal

Boundary

Intermediate

Normal

Abnormal

Boundary

Advanced

Normal

Abnormal

Boundary

(3]

®

16
In part (b), the club stored scores in a 1D array. This allows the club to sort
The following is a sorting algorithm in pseudocode.
NumberOfScores <~ 5
FOR Item « 1 TO NumberOfScores - 1
InsertScore ¢« ArrayData[Iltem]
Index ¢« Item - 1
WHILE (ArrayData[Index] > InsertScore) AND (Index >= 0)
ArrayData[Index + 1] ¢« ArrayData[Index]
Index ¢ Index - 1
ENDWHILE
ArrayData[Index + 1] ¢ InsertScore
ENDFOR

(i) Give the name of this algorithm.

17

(iii) Complete a dry run of the algorithm using the following trace table.

ArrayData
0 1 2

Item | NumberOfScores | InsertScore | Index

99 125 121

[7]

QUESTION 7. -

4 (a) Aprogram has sorted some data in the array, List, in ascending order.

The following binary search algorithm is used to search for a value in the array.

01 ValueFound <«— FALSE

02 UpperBound <«— LengthOfList - 1
03 LowerBound <«— 0

04 NotInList <«— FALSE

05

06 WHILE ValueFound = FALSE AND NotInlList = FALSE
07 MidPoint <«— ROUND ((LowerBound + UpperBound) / 2)
08

09 IF List[LowerBound] = SearchValue

10 THEN

11 ValueFound <«— TRUE

12 ELSE

13 IF List[MidPoint] < SearchValue

14 THEN

15 UpperBound <«— MidPoint + 1

16 ELSE

17 UpperBound <«— MidPoint - 1

18 ENDIF

19 IF LowerBound > MidPoint

20 THEN

21 NotInList <«— TRUE

22 ENDIF

23 ENDIF

24 ENDWHILE

25

26 IF ValueFound = FALSE

27 THEN

28 OUTPUT "The value is in the 1list"

29 ELSE

30 OUTPUT "The value is not found in the list"
31 ENDIF

Note:

The pseudocode function
ROUND (Reall : REAL) RETURNS INTEGER
rounds a number to the nearest integer value.

For example: ROUND (4.5) returns 5 and ROUND (4.4) returns 4

17

(i) There are four errors in the algorithm.

Write the line of code where an error is present and write the correction in p
BT O e

(07014 (=T} o] o HN PO PP P OPPPPP
o PP PPPPPPPRPPPRRP
(07011 To1 11o] o LN SO OP RO P ST PPRPPPI
0 G PP PPPPPPRRPPPTP
(O70] 4 (=T (o] o HN PP RR
g o] S PSP PP PPPPP

(076] ¢=Ye} (o] o T EUTE

(ii) Abinary search is one algorithm that can be used to search an array.

Identify another searching algorithm.

18

(b) The following is an example of a sorting algorithm. It sorts the data in the ari¢

01 TempValue « ""

02 REPEAT

03 Sorted <«— TRUE

04 FOR Count « 0 TO 4

05 IF ArrayData[Count] > ArrayData[Count + 1]
06 THEN

07 TempValue <«— ArrayData[Count + 1]

08 ArrayData[Count + 1] <« ArrayData[Count]
09 ArrayData[Count] <« TempValue

10 Sorted <« FALSE

11 ENDIF

12 ENDFOR

13 UNTIL Sorted = TRUE

(i) Complete the trace table for the algorithm given in part (b), for the ArrayData values
given in the table.

ArrayData

Count | TempValue | Sorted
0 1 2 3 4 5

5 20 12 25 32 29

[4]

19

(ii) Rewrite lines 4 to 12 of the algorithm in part (b) using a WHILE loop
loop.

(iii) Identify the algorithm shown in part (b).

(iv) ldentify another sorting algorithm.

QUESTION 8.

5 The following table shows part of the instruction set for a processor which has one_
register, the Accumulator (ACC) and an Index Register (IX).

T

Instruction

Op code Operand

Explanation

LDM | #n

Immediate addressing. Load the number n to ACC.

LDD | <address>

Direct addressing. Load the contents of the location at the given address to
ACC.

LDI | <address>

Indirect addressing. The address to be used is at the given address. Load
the contents of this second address to ACC.

LDX | <address>

Indexed addressing. Form the address from <address> + the contents of
the Index Register. Copy the contents of this calculated address to ACC.

LDR | #n

Immediate addressing. Load the number n to IX.

STO | <address>

Store the contents of ACC at the given address.

STX | <address>

Indexed addressing. Form the address from <address> + the contents of
the Index Register. Copy the contents from ACC to this calculated address.

ADD | <address>

Add the contents of the given address to the ACC.

INC | <register>

Add 1 to the contents of the register (ACC or 1X).

DEC | <register>

Subtract 1 from the contents of the register (ACC or IX).

JMP | <address>

Jump to the given address.

CMP | <address>

Compare the contents of ACC with the contents of <address>.

CMP | #n

Compare the contents of ACC with number n.

JPE | <address>

Following a compare instruction, jump to <address> if the compare was
True.

JPN | <address>

Following a compare instruction, jump to <address> if the compare was
False.

AND | #n

Bitwise AND operation of the contents of ACC with the operand.

AND | <address>

Bitwise AND operation of the contents of ACC with the contents of
<address>.

XOR | #n

Bitwise XOR operation of the contents of ACC with the operand.

XOR | <address>

Bitwise XOR operation of the contents of ACC with the contents of
<address>.

OR | #n

Bitwise OR operation of the contents of ACC with the operand.

OR | <address>

Bitwise OR operation of the contents of ACC with the contents of
<address>.
<address> can be an absolute address or a symbolic address.

Bits in ACC are shifted n places to the left. Zeros are introduced on the

LSL| #n right hand end.
Bits in ACC are shifted n places to the right. Zeros are introduced on the
LSR | #n
left hand end.
IN Key in a character and store its ASCII value in ACC.
ouT Output to the screen the character whose ASCII value is stored in ACC.
END Return control to the operating system.

15

(a) A programmer needs a program that multiplies a binary number by 4.

The programmer has started to write the program in the following table. The com
contains explanations for the missing program instructions.

Write the program using the given instruction set.

Instruction
Label Comment
Op code Operand

// load contents of NUMBER

// perform shift to multiply by 4

// store contents of ACC in NUMBER

// end program

NUMBER: | BO0110110

(5]
Note:
denotes immediate addressing

B denotes a binary number, e.g. B01001010
& denotes a hexadecimal number, e.g. &4A

16

(b) A programmer needs a program that counts the number of lower case letters \

Complete the program using the given instruction set. A copy of the instruction set is provic
on the opposite page.

The programmer has started to write the program in the following table. The comn.\\
contains explanations for the missing program instructions. \

Instruction
Label Comment
Op code Operand
LDR | #0 // initialise Index Register to 0
START: // load the next value from the STRING

// perform bitwise AND operation with MASK

// check if result is equal to MASK

// if FALSE, jump to UPPER

// increment COUNT

UPPER: INC | IX // increment the Index Register

// decrement LENGTH

// is LENGTH = 0 ?

// if FALSE, Jjump to START

END // end program
MASK: | BO010000O // 1f bit 5 is 1, letter is lower case
COUNT: | O
LENGTH: | 5
STRING: | B01001000 // ASCII code for 'H'
B01100001 // ASCII code for 'a'
B01110000 // ASCII code for 'p'
B01110000 // ASCII code for 'p'
B01011001 // ASCII code for 'Y'

(8]

17

Instruction

Op code Operand

Explanation ‘

LDM | #n

Immediate addressing. Load the number n to ACC.

LDD | <address>

Direct addressing. Load the contents of the location at the given addres.
ACC.

LDI | <address>

Indirect addressing. The address to be used is at the given address. Load
the contents of this second address to ACC.

LDX | <address>

Indexed addressing. Form the address from <address> + the contents of
the Index Register. Copy the contents of this calculated address to ACC.

LDR | #n

Immediate addressing. Load the number n to IX.

STO | <address>

Store the contents of ACC at the given address.

STX | <address>

Indexed addressing. Form the address from <address> + the contents of
the Index Register. Copy the contents from ACC to this calculated address.

ADD | <address>

Add the contents of the given address to the ACC.

INC | <register>

Add 1 to the contents of the register (ACC or 1X).

DEC | <register>

Subtract 1 from the contents of the register (ACC or IX).

JMP | <address>

Jump to the given address.

CMP | <address>

Compare the contents of ACC with the contents of <address>.

CMP | #n

Compare the contents of ACC with number n.

JPE | <address>

Following a compare instruction, jump to <address> if the compare was
True.

JPN | <address>

Following a compare instruction, jump to <address> if the compare was
False.

AND | #n

Bitwise AND operation of the contents of ACC with the operand.

AND | <address>

Bitwise AND operation of the contents of ACC with the contents of
<address>.

XOR | #n

Bitwise XOR operation of the contents of ACC with the operand.

XOR | <address>

Bitwise XOR operation of the contents of ACC with the contents of
<address>.

OR | #n

Bitwise OR operation of the contents of ACC with the operand.

OR | <address>

Bitwise OR operation of the contents of ACC with the contents of
<address>.
<address> can be an absolute address or a symbolic address.

Bits in ACC are shifted n places to the left. Zeros are introduced on the

LSL | #n right hand end.
Bits in ACC are shifted n places to the right. Zeros are introduced on the
LSR | #n
left hand end.
IN Key in a character and store its ASCII value in ACC.
ouT Output to the screen the character whose ASCII value is stored in ACC.
END Return control to the operating system.

18

BLANK PAGE

19

BLANK PAGE

